Math 20550 - Summer 2016 Stokes' and Divergence Theorems Worksheet July 18, 2016

Question 1. Compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle y^2, -z^2, x \rangle$ and $\mathbf{r}(t) = \langle 3\cos t, 4\cos t, 5\sin t \rangle$, $0 \le t \le 2\pi$.

Question 2. Compute the flux of $\mathbf{F} = \langle x, -2y, 3z \rangle$ where S is the sphere $x^2 + y^2 + z^2 = 6$ with outward orientation.

Question 3. Compute $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$ where $\mathbf{F} = \langle 2y, -z, x - y - z \rangle$ and S is the piece of the sphere $x^2 + y^2 + z^2 = 25$, $3 \le x \le 5$, which has orientation pointing in the positive x-direction.

Question 4. Compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = \langle z - x, x - y, 2y - z \rangle$ and S is the boundary of the region between the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 16$.

Question 5. Consider the argument:

The Divergence Theorem says,

$$\iint_{\partial K} \mathbf{F} \cdot d\mathbf{S} = \iiint_K (\nabla \cdot \mathbf{F}) \, dV,$$

and Stokes' theorem says,

$$\oint_{\partial \mathbf{S}} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S},$$

so I can combine the two statements to get

$$\oint_{\partial \mathbf{S}} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iiint_{K} (\nabla \cdot \mathbf{F}) \, dV.$$

Since $\nabla \cdot (\nabla \times \mathbf{F}) = \text{div}(\text{curl } \mathbf{F}) = 0$, this then means that the line integral of any vector field along the boundary of a surface is always 0.

- (a) Critique the above argument.
- (b) Assume that \mathbf{F} is a C^1 vector field and compute the flux integral $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$ where S is the boundary of the cube $[-1,1] \times [-1,1]$.

Question 6. Compute the surface integral $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$ where $\mathbf{F} = \langle yz, -xz, xy \rangle$ and S is the piece of the ellipsoid $x^2 + y^2 + 8z^2 = 1$, $z \ge 0$ and upward orientation. (Hint: consider an easier surface.)